

ESRT

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON THE WEAK SOLUTION OF COMPOUND LAPLACE BESSEL EQUATION

Sudprathai Bupasiri *

* Department of Mathematics, Sakon Nakhon Rajabhat University, Thailand 47000

DOI: 10.5281/zenodo.1247069

ABSTRACT

In this paper, we have studied the compound Laplace Bessel equation of

$$\sum_{r=0}^{m} c_r \Delta_B^r u(x) = f(x)$$

where Δ_B^r is the Laplace – Bessel operator iterated *r*-times, f(x) is a given generalized function, u(x) is an unknown function, $x \in \mathbb{R}_n^+$ and c_r is a constant. In this work, we study the weak solution u(x) of above the equation.

KEYWORDS: Weak solution, Compound Laplace Bessel equation, Tempered distribution.

I. INTRODUCTION

Sarikaya and Yildirim [3] have shown that the *n*-dimensional classical Laplace-Bessel equation have $u(x) = (-1)^k R_{2k}^e(x)$ is an elementary solution of the equation $\Delta_B^k u(x) = \delta$. Later, Kananthai and Nonlaopon [2] have studied the weak solution of the compound ultra-hyperbolic equation. Sarikaya and Yildirim [5] have studied the weak solution of the compound Bessel ultra-hyperbolic equation. Moreover, Bupasiri and Nonlaopon [6] have studied the weak solution of compound equations related to the ultra-hyperbolic operators. In this article, we will consider the Laplace-Bessel operator iterated

k-time with $x \in \mathbb{R}_{n}^{+} = \{x : x = (x_{1}, \dots, x_{n}), x_{1} > 0, \dots, x_{n} > 0\}$

$$\Delta_{B}^{k} = \left(\sum_{i=1}^{p} B_{X_{i}} + \sum_{j=p+1}^{p+q} B_{X_{j}}\right)^{k}, \ p+q=n$$
(1.1)

 $B_{x_i} = \frac{\partial^2}{\partial x_i^2} + \frac{2\nu_i}{x_i} \frac{\partial}{\partial x_i} \text{ where } 2\nu_i = 2\alpha_i + 1, \ 2\alpha_i > -\frac{1}{2}, \ x_i > 0 \ , i = 1, 2, ..., n, k \text{ is nonnegative integer and } n$

is dimension of $x \in \mathbb{R}_n^+$. Consider the equation

$$\Delta_B^k u(x) = f(x) \tag{1.2}$$

ISSN: 2277-9655[Bupasiri* et al., 7(5): May, 2018]Impact Factor: 5.164ICTM Value: 3.00CODEN: IJESS7where u(x) and f(x) are some generalized functions. We will develop the equation (1.2) to the form

$$\sum_{r=0}^{m} c_r \Delta_B^r u(x) = f(x)$$
(1.3)

which is called the compound Laplace Bessel and by convention $\Delta_B^0 u(x) = u(x)$. In finding the solutions of (1.3), we use the properties of convolutions for the generalized functions.

II. PRELIMIMARIES

Definition 2.1. Let $x = (x_1, ..., x_n)$ be a point of the *n* - dimensional space \mathbb{R}_n^+

$$V = x_1^2 + x_2^2 + \dots + x_p^2 + x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2$$
(2.1)

where p + q = n. For any complex number α , defined the function

1

$$R_{\alpha}^{e}(x) = \frac{V \frac{\alpha - n - 2/\nu}{2}}{w_{n}(\alpha)}$$
(2.2)

where

$$w_{n}(\alpha) = \frac{\prod_{i=1}^{n} 2^{\nu_{i} - \frac{1}{2}} \Gamma\left(\nu_{i} + \frac{1}{2}\right) \Gamma\left(\frac{\alpha}{2}\right)}{2^{n + 2/\nu/-2\alpha} \Gamma\left(\frac{n + 2/\nu/-\alpha}{2}\right)} , |\nu| = \nu_{1} + \dots + \nu_{n}.$$
(2.3)

The function $R^{e}_{\alpha}(x)$ is call the *elliptic kernel of Marcel Riesz* and an ordinary function if Re $\alpha \ge n$ and is a distribution of α if Re $\alpha < n$.

Lemma 2.1. $R_{2k}^{e}(x)$ is a homogeneous distribution of order $(2k - n - 2/\nu)$. In particular, it is a tempered distribution.

Proof. We need to show that $R^{e}_{2k}(x)$ satisfies the Euler equation

$$\sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} R_{2k}^e(x) = (2k - n - 2/\nu) R_{2k}^e(x).$$

Now

$$\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} R_{2k}^{e}(x) = \frac{1}{w_{n}(2k)} \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} \left(x_{1}^{2} + \dots + x_{p}^{2} + x_{p+1}^{2} + \dots + x_{p+q}^{2}\right)^{\frac{2k - n - 2/\nu}{2}}$$
$$= \frac{1}{w_{n}(2k)} \left(2k - n \left(x_{1}^{2} + \dots + x_{p}^{2} + x_{p+1}^{2} + \dots + x_{p+q}^{2}\right)^{\frac{2k - n - 2/\nu}{2} - 1} \times \left(x_{1}^{2} + \dots + x_{p}^{2} + x_{p+1}^{2} + \dots + x_{p+q}^{2}\right)^{\frac{2k - n - 2/\nu}{2}}$$
$$= \frac{1}{w_{n}(2k)} \left(2k - n \left(x_{1}^{2} + \dots + x_{p}^{2} + x_{p+1}^{2} + \dots + x_{p+q}^{2}\right)^{\frac{2k - n - 2/\nu}{2}}\right)^{\frac{2k - n - 2/\nu}{2}}$$

$$=\frac{\frac{2k-n-2/\nu}{2}}{(2k-n-2/\nu)}$$

= $(2k-n-2/\nu)R_{2k}^{e}(x)$.

Hence $R_{2k}^{e}(x)$ is a homogeneous distribution of order $(2k - n - 2/\nu)$. Donoghue [7] prove that every homogeneous distribution is a tempered distribution. So $R_{2k}^{e}(x)$ is a tempered distribution. This is complete of proof.

Lemma 2.2. Given the equations

$$\Delta_B^k u(x) = \delta(x) \tag{2.4}$$

where Δ_B^k is defined by (1.1), $x \in \mathbb{R}_n^+$ and $\delta(x)$ is the Dirac-delta distribution, then we obtain $u(x) = (-1)^k R_{2k}^e(x)$ as an elementary solution of (2.4), where $R_{2k}^e(x)$ is defined by (2.2) with $\alpha = 2k$. Proof. See [3].

Lemma 2.3. (The convolutions of tempered distributions)

(a)
$$\left(\Delta_{B}^{k}\delta\right) * u(x) = \Delta_{B}^{k}u(x)$$
 where $u(x)$ is any tempered distribution.

(b) Let $R_{2k}^{e}(x)$ and $R_{2m}^{e}(x)$ be defined by (2.2), then $R_{2k}^{e}(x) * R_{2m}^{e}(x)$ exists and is a tempered distribution.

(c) Let $R_{2k}^e(x)$ and $R_{2m}^e(x)$ be defined by (2.2), then $R_{2k}^e(x) * R_{2m}^e(x) = R_{2k+2m}^e(x)$ where k and m are nonnegative integer.

(d) Let $R_{2k}^{e}(x)$ and $R_{2m}^{e}(x)$ be defined by (2.2) and if $R_{2k}^{e}(x) * R_{2m}^{e}(x) = \delta$ then $R_{2k}^{e}(x)$ is an inverse of $R_{2m}^{e}(x)$ in the convolution algebra, denoted by $R_{2k}^{e}(x) = R_{m}^{e^{*-1}}(x)$.

Proof. (a) First, we consider the case k = 1, now

$$\Delta_B \delta(x) = \left(\sum_{i=1}^p \frac{\partial^2 \delta(x)}{\partial x_i^2} + \frac{2v_i}{x_i} \frac{\partial \delta(x)}{\partial x_i} \right) + \left(\sum_{\substack{j=p+1\\ j=p+1}}^{p+q} \frac{\partial^2 \delta(x)}{\partial x_j^2} + \frac{2v_j}{x_j} \frac{\partial \delta(x)}{\partial x_j} \right), \ p+q=n$$

and let $\varphi(x)$ be a testing function in the Schwarts space S. By the definition odd B-convolution, we have

$$\left\langle \Delta_{B} \delta(x) * u(x), \phi(x) \right\rangle = \left\langle u(x), \left\langle \Delta_{B} \delta(x), \phi(x+y) \right\rangle \right\rangle$$

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

$$= \left\langle u(x), \left\langle \left(\sum_{i=1}^{p} \frac{\partial^{2} \delta(y)}{\partial x_{i}^{2}} + \frac{2v_{i}}{x_{i}} \frac{\partial \delta(y)}{\partial x_{i}}\right) + \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2} \delta(y)}{\partial x_{j}^{2}} + \frac{2v_{j}}{x_{j}} \frac{\partial \delta(y)}{\partial x_{j}}\right), \varphi(x+y) \right\rangle \right\rangle$$

$$= \left\langle u(x), \left\langle \delta(y), \left(\sum_{i=1}^{p} \frac{\partial^{2} \varphi(x+y)}{\partial x_{i}^{2}} + \frac{2v_{i}}{x_{i}} \frac{\partial \varphi(x+y)}{\partial x_{i}}\right) + \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2} \varphi(x+y)}{\partial x_{j}^{2}} + \frac{2v_{j}}{x_{j}} \frac{\partial \varphi(x+y)}{\partial x_{j}}\right) \right\rangle \right\rangle$$

$$= \left\langle u(x), \left(\sum_{i=1}^{p} \frac{\partial^{2} \varphi(x)}{\partial x_{j}^{2}} + \frac{2v_{i}}{x_{i}} \frac{\partial \varphi(x)}{\partial x_{i}}\right) + \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2} \varphi(x)}{\partial x_{j}^{2}} + \frac{2v_{j}}{x_{j}} \frac{\partial \varphi(x)}{\partial x_{j}}\right) \right\rangle$$

$$= \left\langle \left(\sum_{i=1}^{p} \frac{\partial^{2} u(x)}{\partial x_{j}^{2}} + \frac{2v_{i}}{x_{i}} \frac{\partial u(x)}{\partial x_{i}}\right) + \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2} u(x)}{\partial x_{j}^{2}} + \frac{2v_{j}}{x_{j}} \frac{\partial \varphi(x)}{\partial x_{j}}\right), \varphi(x) \right\rangle$$

$$= \left\langle \Delta_{B} u(x), \varphi(x) \right\rangle.$$

It follows that

$$\Delta_B \delta(x) * u(x) = \Delta_B u(x).$$

Similarly for any k, we can show that

$$\Delta_{B}^{k}\delta(x)*u(x) = \Delta_{B}^{k}u(x).$$

(b) By Lemma 2.1, thus $R_{2k}^e(x)$ and $R_{2m}^e(x)$ are tempered distribution and $R_{2k}^e(x) * R_{2m}^e(x)$ exists and is a tempered distribution by [4].

(c) From equation $\Delta_B^{k+m}u(x) = \delta(x)$ we obtain $u(x) = (-1)^{k+m}R_{2k+2m}(x)$ by Lemma 2.2. For any *m* is a nonnegative integer, we write

$$\Delta_B^{k+m}u(x) = \Delta_B^k \Delta_B^m u(x) = \delta(x)$$

then by Lemma 2.2 we have the following equality

$$\Delta_B^m u(x) = (-1)^k R_{2k}^e(x).$$

Convolving both sides by $(-1)^{pn} R^{e}_{2m}(x)$ we obtain

$$(-1)^m R^e_{2m}(x) * \Delta^m_B u(x) = (-1)^k R^e_{2k}(x) * (-1)^m R^e_{2m}(x)$$

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

 $\Delta_B^m \Big((-1)^m R_{2m}^e(x) \Big) * u(x) = (-1)^{k+m} R_{2k}^e(x) * R_{2m}^e(x).$

Then from Lemma 2.2 we have the following equality

$$\delta(x) * u(x) = (-1)^{k+m} R^{e}_{2k}(x) * R^{e}_{2m}(x).$$

It follows that

or

$$u(x) = (-1)^{k+m} R^{e}_{2k}(x) * R^{e}_{2m}(x).$$

From the fact that $u(x) = (-1)^{k+m} R^e_{2k+2m}(x)$ we obtain $R^e_{2k}(x) * R^e_{2m}(x) = R^e_{2k+2m}(x)$.

(d) Since $R_{2k}^{e}(x)$ and $R_{2m}^{e}(x)$ are tempered distributions with compact supports,

thus $R_{2k}^e(x)$ and $R_{2m}^e(x)$ are the elements of space of convolution algebra u' of distribution. Now $R_{2k}^e(x) * R_{2m}^e(x) = \delta(x)$ then by Zemanian [1] show that $R_{2k}^e(x) = R_{2m}^{e^*-1}(x)$ is an inverse.

Lemma 2.4. Let $R_{2k}^{e}(x)$ and $w_{n}(2k)$, be defined by (2.2) and (2.3). Then

- (a) $w_n(2k+2) = 8k(n+2/\nu/-2k-2)w_n(2k)$.
- (b) $\Delta_B^k R_{2m}^e(x) = (-1)^k R_{2m-2k}^e(x)$, where k and m are nonnegative integer.
- (c) $R^{e}_{-2k}(x) = (-1)^{k} \Delta^{k}_{B} \delta(x)$, where k is a nonnegative integer.

Proof. (a) From (2.3), we have

$$w_n(2k+2) = \frac{\prod_{i=1}^{n} 2^{v_i - \frac{1}{2}} \Gamma\left(v_i + \frac{1}{2}\right) \Gamma(k+1)}{2^{n+2/\nu/-4k-4} \Gamma\left(\frac{n+\nu/2k-2}{2}\right)}$$

$$=\frac{8k(n+2/\nu/-2k-2)\prod_{i=1}^{n}2^{\nu_{i}-\frac{1}{2}}\Gamma\left(\nu_{i}+\frac{1}{2}\right)\Gamma(k)}{2^{n+2/\nu/-4k}\Gamma\left(\frac{n+/\nu/-2k-2}{2}\right)}$$

$$= 8k(n+2/\nu/-2k-2)w_n(2k).$$

[Bupasiri* *et al.*, 7(5): May, 2018] ICTM Value: 3.00 (b) By Lemma 2.3(c), we have ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

$$\delta * R_{2m}^{e}(x) = R_{2k}^{e}(x) * R_{2m-2k}^{e}(x)$$
$$\Delta_{B}^{k}(-1)^{k} R_{2k}^{e}(x) * R_{2m}^{e}(x) = R_{2k}^{e}(x) * R_{2m-2k}^{e}(x)$$
$$(-1)^{k} R_{2k}^{e}(x) * \Delta_{B}^{k} R_{2m}^{e}(x) = R_{2k}^{e}(x) * R_{2m-2k}^{e}(x)$$

and

$$\Delta_B^k R_{2m}^e(x) = (-1)^k R_{2m-2k}^e(x).$$

(c) For m = k by Lemma 2.4(b) we have

$$\Delta_B^k R_{2m}^e(x) = (-1)^k R_0^e(x), \quad R_0^e = \delta.$$

For m = 0, by Lemma 2.4(b) we have $\Delta_B^k R_0^e(x) = (-1)^k R_{-2k}^e(x)$ or $(-1)^k \Delta_B^k \delta = R_{-2k}^e(x)$.

III. MAIN RESULTS

Theorem 3.1. Given the compound Laplace – Bessel equation

$$\sum_{r=0}^{m} C_r \Delta_B^r u(x) = f(x)$$
(3.1)

where Δ_B^r is the Laplace – Bessel operator iterated k-times defined by (1.1), f(x) is a given generalized function, u(x) is an unknown function, $x \in \mathbb{R}_n^+$ and C_r is a constant. Then (3.1) has a weak solution

$$u(x) = f(x) * R_{2m}^{e}(x) * \left((-1)^{m} C_{m} R_{0}^{e}(x) + w(x) R_{2}^{e}(x) \right)^{*-1}$$
(3.2)

where

$$w(x) = (-1)^{m-1} C_{m-1} + (-1)^{m-2} C_{m-2} \frac{V}{8(n+2/\nu/-4)} + (-1)^{m-3} C_{m-3} \frac{V^2}{8 \cdot 16(n+2/\nu/-4)(n+2/\nu/-6)}$$

$$\cdots + C_0 \frac{V^{m-1}}{8 \cdot 16 \cdot 24 \cdots 8(m-1)(n+2/\nu/-4)(n+2/\nu/-6) \cdots (n+2/\nu/-2m)}$$
(3.3)

and V defined by (2.1) and $\left((-1)^m C_m R_0^e(x) + w(x) R_2^e(x)\right)^{*-1}$ is an inverse of

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

$$(-1)^m C_m R_0^e(x) + w(x) R_2^e(x)$$

Proof. By Lemma 2.3(a), equation (3.1) can be written as

$$(C_m \Delta_B^m \delta + C_{m-1} \Delta_B^{m-1} \delta + \dots + C_1 \Delta_B \delta + C_0 \delta) * u(x) = f(x).$$

Convolving both sides by $R_{2m}^e(x)$ defined by (2.2), we obtain

$$\left(C_m \Delta_B^m R_{2m}^e(x) + C_{m-1} \Delta_B^{m-1} R_{2m}^e(x) + \dots + C_1 \Delta_B R_{2m}^e(x) + C_0 R_{2m}^e(x)\right) * u(x) = f(x) * R_{2m}^e(x).$$

By Lemma 2.2 and Lemma 2.4(b), we obtain

$$\left((-1)^{m}C_{m}\delta + (-1)^{m-1}C_{m-1}R_{2}^{e}(x) + \dots + (-1)C_{1}R_{2(m-1)}^{e}(x) + C_{0}R_{2m}^{e}(x)\right) * u(x) = f(x) * R_{2m}^{e}(x).$$
(3.4)

By Lemma 2.4(a), we obtain $R_4^e(x) = \frac{V \frac{4 - n - 2/V}{2}}{w_n(4)} = R_2^e(x) \cdot \frac{V}{8(n + 2/V/-4)}$.

Similarly,

$$R_{6}^{e}(x) = R_{2}^{e}(x) \cdot \frac{V^{2}}{8 \cdot 16(n+2/\nu/-4)(n+2/\nu/-6)}$$

$$R_{8}^{e}(x) = R_{2}^{e}(x) \cdot \frac{V^{3}}{8 \cdot 16 \cdot 24(n+2/\nu/-4)(n+2/\nu/-6)(n+2/\nu/-8)}$$
N

$$R_{2m}^{e}(x) = R_{2}^{e}(x) \cdot \frac{V^{m-1}}{8 \cdot 16 \cdot 24 \cdots 8(m-1)(n+2/\nu/-4)(n+2/\nu/-6) \cdots (n+2/\nu/-2m)}$$

Thus we obtain the function w(x) of (3.3). Now w(x) is continuous and infinitely differentiable in classical sense for *n* is odd. Since $R_2^e(x)$ is a tempered distribution with compact support, hence $w(x)R_2^e(x)$ also is tempered distribution with compact support and so $(-1)^m C_m R_0^e(x) + w(x)R_2^e(x)$. By Lemma 2.3(d), $(-1)^m C_m R_0^e(x) + w(x)R_2^e(x)$ has an inverse denote by

$$\left((-1)^m C_m R_0^e(x) + w(x) R_2^e(x)\right)^{*-1}$$

Now (3.4) can be written as

$$\left((-1)^m C_m R_0(x) + w(x) R_2(x)\right) * u(x) = f(x) * R_{2m}(x), \quad R_0 = \delta.$$

Convolving both sides by

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

we have

 $u(x) = f(x) * R_{2m}^{e}(x) * \left((-1)^{m} C_{m} R_{0}^{e}(x) + w(x) R_{2}^{e}(x) \right)^{*-1}$

 $\left((-1)^m C_m R_0^e(x) + w(x) R_2^e(x)\right)^{*-1},$

is weak solution of (3.1) with odd-dimensional n. This completes the proof.

Corollary 3.1. Given the compound Laplace – Bessel equation

$$\sum_{r=0}^{m} C_r \Delta_B^r u(x) = \delta(x)$$

(3.5)

where Δ_B^r is the Laplace – Bessel operator iterated r-times defined by (1.1), $\delta(x)$ is

a given Dirac delta distribution, u(x) is an unknown function, $x \in \mathbb{R}_n^+$ and C_r is a constant. Then (3.5) has a solution

$$u(x) = R_{2m}^{e}(x) * \left((-1)^{m} C_{m} R_{0}^{e}(x) + w(x) R_{2}^{e}(x) \right)^{*-1}$$

(3.6)

where

$$w(x) = (-1)^{m-1} C_{m-1} + (-1)^{m-2} C_{m-2} \frac{V}{8(n+2/\nu/-4)} + (-1)^{m-3} C_{m-3} \frac{V^2}{8 \cdot 16(n+2/\nu/-4)(n+2/\nu/-6)} + \dots + C_0 \frac{V^{m-1}}{8 \cdot 16 \cdot 24 \cdots 8(m-1)(n+2/\nu/-4)(n+2/\nu/-6) \cdots (n+2/\nu/-2m)}$$
(3.7)

and V defined by (2.1) and $\left((-1)^m C_m R_0^e(x) + w(x) R_2^e(x)\right)^{*-1}$ is an inverse of

$$(-1)^m C_m R_0^e(x) + w(x) R_2^e(x).$$

Proof. If $f(x) = \delta(x)$, then we have

$$u(x) = R_{2m}^{e}(x) * \left((-1)^{m} C_{m} R_{0}^{e}(x) + w(x) R_{2}^{e}(x) \right)^{*-1}$$

yielding the result, where $\delta(x)$ is Dirac delta distribution and f(x) is generalized function.

IV. ACKNOWLEDGEMENTS

The author would like to thank the referee for his suggestions which enhanced the presentation of the paper. The author was supported by Sakon Nakhon Rajabhat University.

V. REFERENCES

- [1] A. H. Zemanian, Distribution and Transform Analysis, McGraw Hill, New York, 1965.
- [2] A. Kananthai, and K. Nonlaopon, "On the weak solution of the compound ultra hyperbolic equation," in CMU J., VOL. 1, 2002, pp. 209 214.
- [3] H. Yildirim, M.Z. Sarikaya and S. Ozturk, "The solutions of the *n*-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution," in Proc. Indian Acad. Sci.(Math.Sci.), VOL. 114, 2004, pp. 375-387.
- [4] M.A. Tellez, and S. E. Trione, "The distributional convolution products of Marcel Riesz's ultrahyperbolic kernel," in Revista de la Union Matematica Argentina, VOL. 39, 1995.
- [5] M. Z. Sarikaya and H. Yildirim, "On the weak solution of the compound Bessel ultra hyperbolic equation," in Appl. Math. Comput., VOL. 189, 2007, pp. 910-917.
- [6] S. Bupasiri, and K. Nonlaopon, "On the weak solution of compound equations related to the ultra-hyperbolic operators," in FJAM., VOL. 35, 2009, pp. 129-139.
- [7] W. F. Donoghue, Distribution and Fourier Transform, Academic Press, New York, 1969.

CITE AN ARTICLE

Bupasiri, S. (2018). ON THE WEAK SOLUTION OF COMPOUND LAPLACE BESSEL EQUATION. *INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY*, 7(5), 334-342.