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ABSTRACT
In this paper, we have studied the compound Laplace Bessel equation of

g er AL u(x)= (x)

r=0

where ArB is the Laplace — Bessel operator iterated r -times, f(x) is a given generalized

function, u(x) is an unknown function, xe R}y and ¢, is a constant. In this work, we

study the weak solution u(x) of above the equation.
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l. INTRODUCTION
Sarikaya and Yildirim [3] have shown that the n-dimensional classical Laplace-Bessel equation have

u(x)=(-2)K RS, (x) is an elementary solution of the equation AkBu(x)=8. Later, Kananthai and

Nonlaopon [2] have studied the weak solution of the compound ultra-hyperbolic equation. Sarikaya and
Yildirim [5] have studied the weak solution of the compound Bessel ultra-hyperbolic equation.
Moreover, Bupasiri and Nonlaopon [6] have studied the weak solution of compound equations related

to the ultra-hyperbolic operators. In this article, we will consider the Laplace-Bessel operator iterated

k-time with xeR}={x:x=(xq,...Xn).x¢ >0,...xn >0}

K p p+q
Ag=| X Bx+ X By |, p+q=n (1.1)
i=1 j=p+1
2
2vj . . Lo
Bx, :a—2+%a%where 2vj =20 +1, 20 >—%, xj >0 ,i=12,...n, k isnonnegative integer and n
i OXi

ox
is dimension of x e R}, . Consider the equation

ASu(x)=(x) (1.2)
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where u(x) and f(x) are some generalized functions. We will develop the equation (1.2) to the form

m

Zjoc,-ABu(x)z f(x) (1.3)

which is called the compound Laplace Bessel and by convention A%u( )=u(x). In finding the

solutions of (1.3) , we use the properties of convolutions for the generalized functions.

1. PRELIMIMARIES

Definition 2.1. Let x=(xq,...x) be a point of the n - dimensional space R}

2 2 2 2 2 2
V=xf FXG XD XD g F X o+ XD (2.1)

where p+qg=n. For any complex number o , defined the function
v Ot—n;2|v|
Rg,(X)= ———F~+— (22)
W (@)

1
n v—-

m2 2 F(vi + 1Jr(aj

i=1 2)\2

2n+2|v|—20cr(n +2 I2v I —aj

where Wn (o) = , |v|=v1+---+vn. (2.3)

The function R$ (x) is call the elliptic kernel of Marcel Riesz and an ordinary function if Re a>n

and is a distribution of o if Re a<n.
Lemma 2.1. ng(x) is a homogeneous distribution of order (2k—n-2]|v[). In particular, itis a
tempered distribution.

Proof. We need to show that ng( x) satisfies the Euler equation

le 2k( )=(2k—n—2|v|)ng(X).

=1 i
"o . N g , ) 2k—n-2Jv|
Now ElxiaRZK(x):W 0. ix, ” (Xl + +Xp+Xp+1+"'+Xp+q) 2
1 2k-n-2M
=Wn(2k)(2k—n{x12+m+x%+x%+l+-~+x%+qj 2

x(x12+~~~+x|23 +x%+l+-~~+x%+qj

2k—n-2Jv|
R X2t x2 X2 et X2 j 2
_wn(Zk)(Zk n{xl XD XD g XD
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2k—n-2v|
_(k-n-2|v]y 2
- wn (2k)

:(2k—n—2|v|)R§k(x).
Hence ng(x) is a homogeneous distribution of order (2k —n—2|v]). Donoghue [7]

prove that every homogeneous distribution is a tempered distribution. So ng(x) is

a tempered distribution. This is complete of proof.

Lemma 2.2. Given the equations

ASu(x)=3(x) (2.4)

where AIE is defined by (1.1), xe Rﬁ and 6(x) is the Dirac-delta distribution, then we obtain

u(x)=(-1)K R5, (x) as an elementary solution of (2.4), where R5, (x)is defined by (2.2) with o=2k .

Proof. See [3].

Lemma 2.3. (The convolutions of tempered distributions)

(@) (AkBS) * u(x)= AkBu(x) where u(x) is any tempered distribution.

(b) Let R5, (x) and R5_(x) be defined by (2.2), then RS, (x) * RS _(x) exists and is

a tempered distribution.
(c) Let RSy (X) and Rzem(x) be defined by (2.2), then RS (X)>!< Rgm(x)z R§k+2m(x) where K and
M are nonnegative integer.

(d) Let RS, (x) and R5_(x) be defined by (2.2) and if RS, (x) * R _(x)= & then RS, (x) is an
inverse of RS (x) in the convolution algebra, denoted by RS, (x)=RE(x).

Proof. (a) First, we consider the case k=1, now

Ag5(x)= EaZS(X)Jeri as(x) |, Pt 628(x)+2Vj a5(x) | beqon
i=1 ox Xj  OX j=p+1 6xj Xj j

and let go(x) be a testing function in the Schwarts space S. By the definition

odd B -convolution, we have

<A88(x)* u(x),cp(x)> = (u(){AB3(x)p(x+y) >>
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=2 Lplx+y)

2 . + 2 oV
(| £ 2%80), i adly) | | PRS0 8(2y)+L.188(3./)
j=p+1 ] Xj OXj

i1 a2 X O

0 sty | B 220t y) 2w dulxy)| [ PE8 QPolxey) 2V ol )
i=1 8X2 X aXl j: p+1 6X2 Xj aXJ

J

i o K| | jopi ad X X

P Pul), 2 au) || P %) 2 )|

i o N ]| jopa ad Xj

<U(X)’ g 62(P(X)+ﬁ8(p(x) . pgq 62(p(x)+2v_j ap(x)

It follows that

Similarly for any k , we can show that

e
(b) By Lemma 2.1, thus ng(x) and R

m (x) exists and

(x) are tempered distribution and RS, (x) * RS

is a tempered distribution by [4].

(c) From equation Algmu(x):é‘)(x) we obtain u(x)=(-1)k*M Rop . om(X) by Lemma2.2. Forany m is a

nonnegative integer, we write
ATy (x) = AK ATu(x) = 5(x)
B B~B

then by Lemma 2.2 we have the following equality

Convolving both sides by (~1)"RS _(x) we obtain

(™ RE x) ABuc) = (K RS ()= (MRS, ()
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or

AB(2"RE () Jrulo)= (DR MRE, ()+ R, ().
Then from Lemma 2.2 we have the following equality

8(x)*u(x)= (1K MRE, ()RS (x).

It follows that
u(9) = (DK MR, (x)* RS ().
From the fact that u(x)=(-2)K*+™ RSy om (X) we obtain RS, (x)#R5_(x)=R5, , o (x).

- e
(d) Since RS, (x) and R

2m(x) are tempered distributions with compact supports,

thus ng(x) and Rgm(x) are the elements of space of convolution algebra u’of distribution. Now
RS, (x)*RE_(x)=5(x) then by Zemanian [1] show that RE, (x)=RE*~1(x) is an inverse.
2k 2m 2k 2m

Lemma 2.4. Let RE

5k (%) and wn(2k) , be defined by (2.2) and (2.3). Then

(@) Wi (2k +2)=8k(n+2|v|-2k —2)wp(2k).

(b) AkBRgm(x):(—l)k R5m_ok (X), where k and m are nonnegative integer.

© REZk(x):(—l)kAkBéS(x),where k is a nonnegative integer.
Proof. (a) From (2.3), we have

n v —1 1
m2 2 F[vi + jl“(k +1)
wp (2K +2)= —1=L 2
2n+2|v|—4k—4r(n+|V| -2k —ZJ
2

n v——

8k(n+2|v|-2k-2)T1 2 ZFEVH;jF(k)

i=1
2n+2|v|—4kr(n+|v|2—2k—2j

=8k(n+2|v| -2k —2)wn(2k).
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(b) By Lemma 2.3(c), we have

8% Rom (x)=Rgi (x)* Rom_oic(x)
N (KRG ()% Ry (%)= Ry ()R (¥)

(2R ()* ARG (¥)= R (X)* Ry (¥)

and

ASRE (x)=(-DKRE oy (%)
(c) For m=k by Lemma 2.4(b) we have

A RS (x)=(-DFRE(x), RE=35.

For m=0, by Lemma 2.4(b) we have AkB Rg(x)= (1)K R®, (x) or (1)K AkBS =R%,, (x).

1. MAIN RESULTS
Theorem 3.1. Given the compound Laplace — Bessel equation

3 CrALu(x) = () G.1)
r=0

where ArB is the Laplace — Bessel operator iterated k -times defined by (1.1), f(x) is a

given generalized function, u(x) is an unknown function, x € R}; and Cyis a constant.

Then (3.1) has a weak solution

*—]1
u(x)= f (x) Rgm(x)*((_l)mcmng(x)+ W(X)Rg(x)j (3.2)
where
m-— m— \ m— V2
W)= eng +(-) 2Cm_28(n+2|v|—4)+(_1) 3Cm‘38.16(n+2|v|—4)(n+2|v|—6)

Vm—l
8-16-24---8(m—1)n+2|v|-4\n+2|v|-6)---(n+2|v|-2m)

+Co (3.3)

*—1
and V defined by (2.1) and ((—1)mCmR8(x)+w(x)R§(x)) is an inverse of
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(-)MCcn RS (x)+ W(X)RS (x).

Proof. By Lemma 2.3(a), equation (3.1) can be written as

(CmABS+CmaAT 16+ + C1A g8 +Co8)*u(x)= F(x).
Convolving both sides by Rgm(x) defined by (2.2), we obtain
(cmAfg RE (x)+C_g AT 1RE (x)+---+C1ABRzem(x)+CoRzem(x))*u(x): F(x)*RE_(x).

By Lemma 2.2 and Lemma 2.4(b), we obtain

(s + (- emaRE() -+ (-UCIRE (K +CoRGy (W) rul)= F(X)+RE (0 (34)

Vo2 v
By L 2.4(a), btain Ry (x)=———~—=R5(x)- '
y Lemma 2.4(a), we obtain 4(X) Wn(4) Z(X) 8(n+2|v|-4)
Similarly,

2

Re :Re . v
6 () =Ry (x) 8-16(n+2|v|-4)\n+2|v|-6)

3
Re :Re . v
8(X) Z(X)8.16.24(n+2IVI—4)(ﬂ+2|V|—6)(n+2|V|_8)
\

Vm—l
'8:16-24---8(m-1)n+2|v|-4\n+2|v[-6)-(n+2|v[-2m)

Rgm (x)= Rg(x)
Thus we obtain the function w(x) of (3.3). Now w(x) is continuous and infinitely

differentiable in classical sense for n is odd. Since Rg(x) is a tempered distribution with
compact support, hence W(X)RS(X) also is tempered distribution with compact support
and so (~1)"CmRS(x)+w(x)RS(x). By Lemma2.3(d), (~1)™CmRE(x)+w(x)R5(x) has aninverse denote
by
m e ef))
(DM emRE(X)+ wiIRS ()
Now (3.4) can be written as

[(_1)mcmRo(x)+w(x)R2(x))*u(x): £(x)* Ry, (x), Ry=5.

Convolving both sides by
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((_1)mcng(x)+W(X)Rg(x))*_l,

we have

*1
()= 1) R, (0)+( (-1 CmRE ()+ wRS ()

is weak solution of (3.1) with odd-dimensional n. This completes the proof.

Corollary 3.1. Given the compound Laplace — Bessel equation

3 Cy Alu(x) = 5(x)
r=0

3.5)

where ArB is the Laplace — Bessel operator iterated r-times defined by (1.1), 8(x) is

a given Dirac delta distribution, u(x) is an unknown function, x € R}} and Cy is a constant. Then (3.5)

has a solution

2
_ _ \Y, _ Vv
W(X):(_l)m 1Cm—1+(—1)m 2Cm—27+(—1)m ch_g8~16(n+2|v|—4)(n+2|v|—6)

3.7
CO8~16-24-~~8(m—1)(n+2|v|—4)(n+2|v|—6)-~-(n+2|v|—2m) &7

*—1
and V defined by (2.1) and ((—1)mCmR8(x)+W(X)R§(X)) is an inverse of

()™ CmRG (x)+w(x)RS (x).

Proof. If f(x)=35(x), then we have

x—1
()= Ry () (-2 CrRE (- ()RS (x|

yielding the result, where 5(x) is Dirac delta distributionand f(x) is generalized function.
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