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ABSTRACT 
In  this  paper, we  have  studied  the  compound  Laplace  Bessel  equation  of 

   xf
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where  r
B

  is  the  Laplace – Bessel  operator iterated  r -times,  xf  is  a  given  generalized 

function,  xu   is  an  unknown  function, x ℝ 
n   and  rc   is  a  constant.  In  this  work, we 

study   the   weak  solution  xu  of  above  the  equation.  
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I. INTRODUCTION 
Sarikaya  and  Yildirim  [3]  have  shown  that  the  n -dimensional  classical  Laplace-Bessel equation  have 

     xe
k

Rkxu
2

1  is  an  elementary  solution  of  the  equation     xuk
B

. Later, Kananthai  and  

Nonlaopon  [2]  have  studied  the  weak  solution  of  the  compound  ultra-hyperbolic  equation.  Sarikaya  and  

Yildirim  [5]  have  studied  the  weak  solution  of  the  compound  Bessel  ultra-hyperbolic  equation.  

Moreover,  Bupasiri  and  Nonlaopon  [6]  have  studied  the  weak  solution  of  compound  equations  related  

to  the  ultra-hyperbolic  operators.  In  this  article,  we  will  consider  the  Laplace-Bessel  operator  iterated  

k -time  with  x ℝ    0011  nx,...,x,nx,...,xx:xn   
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2 i , 0ix  n,...,,i, 21 , k  is nonnegative  integer  and  n   

is dimension of x ℝ 
n .  Consider  the  equation 

   xfxuk
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where  xu  and   xf  are  some  generalized  functions. We  will  develop  the  equation (1.2)  to  the  form 
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0

                                                         (1.3)                               

which  is  called  the  compound  Laplace  Bessel  and  by  convention    xuxu
B

0 .  In  finding  the  

solutions  of (1.3) , we  use  the  properties  of  convolutions  for  the  generalized  functions. 

 

 

II. PRELIMIMARIES 

Definition 2.1.  Let  nx,...,xx 1  be a point of the n  - dimensional  space  ℝ 
n  
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where nqp  .  For  any  complex  number   , defined  the  function      
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The  function   xeR   is  call  the  elliptic  kernel  of  Marcel  Riesz  and  an  ordinary  function  if   Re n  

and  is  a  distribution  of    if  Re n .  

Lemma 2.1.    xe
k

R
2

 is  a  homogeneous  distribution  of  order   |v|nk 22  .  In  particular,  it is  a  

tempered  distribution.   

Proof.   We  need  to  show  that  xe
k
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 satisfies  the  Euler  equation   
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Hence  xe
k

R
2

 is  a  homogeneous  distribution  of  order  |v|nk 22  .  Donoghue  [7] 

prove  that  every  homogeneous  distribution  is  a  tempered  distribution.  So  xe
k

R
2

 is  

a  tempered  distribution.  This  is  complete  of  proof. 

 

Lemma 2.2.  Given  the  equations  

   xxuk
B

       (2.4) 

where k
B

  is  defined  by (1.1), x ℝ 
n   and  x  is  the  Dirac-delta  distribution, then  we obtain 

     xe
k

Rkxu
2

1   as  an  elementary solution  of (2.4), where  xe
k

R
2

is  defined  by (2.2) with  k2 . 

Proof.  See [3]. 

 

Lemma 2.3. (The  convolutions  of  tempered  distributions) 
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m  are  nonnegative  integer. 
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Proof.  (a) First, we  consider  the  case 1k , now 
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and  let   x  be  a  testing  function  in  the  Schwarts  space S .  By  the  definition 

odd  B -convolution, we  have   
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=  
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It  follows  that  
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Similarly  for  any k  , we  can  show  that 
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(b) By  Lemma 2.1, thus  xe
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 and   xe
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  are  tempered  distribution  and  xe
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 exists  and 

is  a  tempered  distribution  by [4]. 

(c) From  equation    xxumk
B
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  by  Lemma 2.2.  For any m  is  a 

nonnegative  integer, we  write  
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then  by  Lemma 2.2 we  have  the  following  equality       
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or 
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Then  from  Lemma 2.2  we  have  the  following  equality 
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(b) By  Lemma 2.3(c), we  have 
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III. MAIN RESULTS 
Theorem 3.1. Given  the  compound  Laplace – Bessel  equation 
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where  r
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  is  the  Laplace – Bessel  operator  iterated k -times  defined  by (1.1),  xf   is  a 

given  generalized  function,   xu  is  an  unknown  function, x ℝ 
n  and  rC is  a  constant. 

Then (3.1) has  a  weak  solution 
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1  . 

Proof.  By  Lemma 2.3(a), equation  (3.1)  can  be  written  as 
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Thus  we  obtain  the  function   xw  of  (3.3).  Now    xw   is  continuous  and  infinitely 

differentiable  in  classical  sense  for n  is  odd.  Since  xeR
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  is  a  tempered  distribution  with 

compact  support,  hence     xeRxw
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is  weak  solution  of  (3.1)  with  odd-dimensional  n .  This  completes  the  proof. 

 

Corollary 3.1.  Given  the  compound  Laplace – Bessel  equation 
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  is  the  Laplace – Bessel  operator  iterated r -times  defined  by (1.1),  x   is 

a  given  Dirac  delta  distribution,   xu  is  an  unknown  function, x ℝ 
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yielding  the  result,  where  x  is  Dirac  delta  distribution and  xf  is  generalized  function. 
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